Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds
نویسندگان
چکیده
We prove the existence of Kolmogorov-Petrovsky-Piskunov (KPP) type traveling fronts in space-time periodic and mean zero incompressible advection, and establish a variational (minimization) formula for the minimal speeds. We approach the existence by considering limit of a sequence of front solutions to a regularized traveling front equation where the nonlinearity is combustion type with ignition cut-off. The limiting front equation is degenerate parabolic and does not permit strong solutions, however, the necessary compactness follows from monotonicity of fronts and degenerate regularity. We apply a dynamic argument to justify that the constructed KPP traveling fronts propagate at minimal speeds, and derive the speed variational formula. The dynamic method avoids the degeneracy in traveling front equations, and utilizes the parabolic maximum principle of the governing reaction-diffusion-advection equation. The dynamic method does not rely on existence of traveling fronts. Department of Mathematics, University of Texas at Austin, Austin, TX 78712 ([email protected]). Department of Mathematics, University of Texas at Austin, Austin, TX 78712 ([email protected]). Department of Mathematics and ICES (Institute of Computational Engineering and Sciences), University of Texas at Austin, Austin, TX 78712 ([email protected]).
منابع مشابه
Existence of Kpp Type Fronts in Space-time Periodic Shear Flows and a Study of Minimal Speeds Based on Variational Principle
We prove the existence of reaction-diffusion traveling fronts in mean zero space-time periodic shear flows for nonnegative reactions including the classical KPP (Kolmogorov-Petrovsky-Piskunov) nonlinearity. For the KPP nonlinearity, the minimal front speed is characterized by a variational principle involving the principal eigenvalue of a space-time periodic parabolic operator. Analysis of the ...
متن کاملKpp Fronts in a One-dimensional Random Drift
We establish the variational principle of Kolmogorov-PetrovskyPiskunov (KPP) front speeds in a one dimensional random drift which is a mean zero stationary ergodic process with mixing property and local Lipschitz continuity. To prove the variational principle, we use the path integral representation of solutions, hitting time and large deviation estimates of the associated stochastic flows. The...
متن کاملSolute Transport for Pulse Type Input Point Source along Temporally and Spatially Dependent Flow
In the present study, analytical solutions are obtained for two-dimensional advection dispersion equation for conservative solute transport in a semi-infinite heterogeneous porous medium with pulse type input point source of uniform nature. The change in dispersion parameter due to heterogeneity is considered as linear multiple of spatially dependent function and seepage velocity whereas seepag...
متن کاملSolute Transport for Pulse Type Input Point Source along Temporally and Spatially Dependent Flow
In the present study, analytical solutions are obtained for two-dimensional advection dispersion equation for conservative solute transport in a semi-infinite heterogeneous porous medium with pulse type input point source of uniform nature. The change in dispersion parameter due to heterogeneity is considered as linear multiple of spatially dependent function and seepage velocity whereas seepag...
متن کاملFinite Element Computation of KPP Front Speeds in Cellular and Cat's Eye Flows
We compute the front speeds of the Kolmogorov-Petrovsky-Piskunov (KPP) reactive fronts in two prototypes of periodic incompressible flows (the cellular flows and the cat’s eye flows). The computation is based on adaptive streamline diffusion methods for the advection-diffusion type principal eigenvalue problem associated with the KPP front speeds. In the large amplitude regime, internal layers ...
متن کامل